Debabrata Basu

Debabrata Basu

Born

(19240705)5 July 1924

Died

24 March 2001(20010324) (aged 76)

Nationality

Indian

Occupation

Statistician

Debabrata Basu (5 July 1924 – 24 March 2001) was an Indian statistician who made fundamental contributions to the foundations of statistics. Basu invented simple examples that displayed some difficulties of likelihoodbased statistics and frequentist statistics; Basu's paradoxes were especially important in the development of survey sampling. In statistical theory, Basu's theorem established the independence of a complete sufficient statistic and an ancillary statistic.^{[1]}
Born in Dacca, Bengal, in unpartitioned India (now in Bangladesh), Basu was associated with the Indian Statistical Institute in India, and Florida State University in the United States.^{[2]}
Contents

Biography 1

Publications 2

References 3

Further reading 4

External links 5
Biography
Debabrata Basu was born in Dacca, Bengal, unpartitioned India, now Dhaka, Bangladesh. His father, N. M. Basu, was a mathematician specialising in number theory. Young Basu studied mathematics at Dacca University. He took a course in statistics as part of the undergraduate honours programme in Mathematics but his ambition was to become a pure mathematician.^{[3]} After getting his master's degree from Dacca University, Basu taught there from 1947 to 1948.^{[4]}
Following the partition of India in 1947 Basu made several trips to India. In 1948, Basu moved to Calcutta, where he worked for some time as an actuary in an insurance company. In 1950, he joined the Indian Statistical Institute as a research scholar under C.R. Rao.^{[5]}
In 1950, the Indian Statistical Institute was visited by Abraham Wald, who was giving a lecture tour sponsored by the International Statistical Institute. Wald greatly impressed Basu. Wald had developed a decisiontheoretic foundations for statistics in which Bayesian statistics was a central part, because of Wald's theorem characterising admissible decision rules as Bayesian decision rules (or limits of Bayesian decision rules). Wald also showed the power of using measuretheoretic probability theory in statistics.
In 1953, after submitting his thesis to the University of Calcutta,^{[2]} Basu went as a Fulbright scholar to the University of California, Berkeley. There Basu had intensive discussions with Jerzy Neyman and "his brilliant younger colleagues" like Erich Leo Lehmann.^{[6]} Basu's theorem comes from this time. Basu thus had a good understanding of the decisiontheoretic approach to statistics of Neyman, Pearson and Wald. In fact, Basu is described as having returned from Berkeley to India as a "complete Neyman Pearsonian" by J. K. Ghosh.^{[7]}
Biologist and statistician Ronald Fisher
Basu met Ronald Fisher in the winter of 1954–1955; he wrote in 1988, "With his reference set argument, Sir Ronald was trying to find a via media between the two poles of Statistics – Berkeley and Bayes.^{[8]} My efforts to understand this Fisher compromise led me to the likelihood principle".^{[9]} In their festschrift for Basu, the editors Malay Ghosh and Patak write that
[Basu's] critical examination of both the Neyman–Pearsonian and the Fisherian modes of inference eventually forced him to a Bayesian point of view, via the likelihood route. The final conversion to Bayesianism came in January 1968, when Basu was invited to speak at a Bayesian Session in the Statistics Section of the Indian Science Congress. He confesses that, while preparing for these lectures, he became convinced that Bayesian inference did indeed provide one with a logical resolution of the underlying inconsistencies of both the Neyman–Pearson and the Fisherian theories. Since then, Dr. Basu became an ardent Bayesian and, in many of his foundation papers, pointed out the deficiencies of both the Neyman–Pearsonian and the Fisherian methods.^{[1]}
After 1968, Basu began writing polemical essays, which provided paradoxes to frequentist statistics, and which produced great discussion in statistical journals and at statistical meetings. Particularly stimulating papers were Basu's papers on the foundations of survey sampling.^{[10]} There is an extensive literature discussing Basu's problem of estimating the weight of the elephants at a circus with an enormous bull elephant named Jumbo^{[11]}^{[12]} and on the Fisher randomisation test.^{[13]}
After teaching at the Indian Statistical Institute Basu moved to the United States and taught statistics at Florida State University from 1975 to 1990 when he was made an emeritus professor; he has supervised six students.^{[14]}
Publications
Basu's main articles are reprinted with his comments in Basu, D. (1988). J. K. Ghosh, ed. Statistical information and likelihood : A collection of critical essays by Dr. D. Basu. Lecture Notes in Statistics 45. Springer.

^ ^{a} ^{b} Page i in Ghosh, Malay; Pathak, Pramod K. "Preface". In

^ ^{a} ^{b} Page i in "Preface" to IMS festschrift.

^ Page xvii in Basu, D. (1988). "A Summing Up". In

^ Page i in "Preface" to IMS festschrift. (C.f., Basu's preface to his collected writings, edited by Ghosh.)

^ Page i in "Preface" to IMS festschrift. (C.f., Basu, D. (1988). "A Summing Up". In ).

^ Page xvii in Basu's A Summing Up.

^ Page viii of J. K. Ghosh's preface to the selected essays of Basu.

^ The term "Berkeley" has several meanings, here. Basu refers to the leadership of infinitesimals in mathematical analysis; Berkeley's criticisms were answered by Thomas Bayes in a pamphlet.

^ Page xvii in Ghosh (ed.)

^ Ghosh's editorial notes.

^ Brewer, Ken (2002). Combined Survey Sampling Inference: Weighing of Basu's Elephants. Hodder Arnold.

^ Pavía, Jose M. Estimating proportions with unequal sampling probabilities: the Basu's elephant problem revisited (2009). Far East J. Theor. Stat. 29 (2): 129–136.

^

^ "Mathematical Genealogy". Retrieved 4 March 2008.
Further reading

"Special issue in memory of D. Basu".
External links

Department of Statistics Florida State University

obituaryFlorida State Times

Debabrata Basu: another photograph on the Portraits of Statisticians page.

For Basu's PhD students see Debabrata Basu at the Mathematics Genealogy Project
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.